

Webinar Overview

□ Presenter:

- Amanda Ludlow Principal Scientist
- Moderator:
 - Tanya Bissell
- Length of Webinar: (1) hour
- Questions:
 - Mid & Post Presentation
 - Please submit via the viewing panel
- □ For More Information or Comments:
 - Contact Tanya Bissell at: tbissell@rouxinc.com

Sustainable Stormwater Management For Industrial Facilities

ROUX

Presented by: Amanda Ludlow, Principal Scientist Roux Associates, Inc.

October 20, 2015

Overview

- Sustainable Stormwater Management
 - Green Infrastructure (GI) Techniques
 - Benefits
- Industrial Stormwater Management
 - Environmental and Regulatory Drivers
 - Design Considerations
- Techniques for Existing Industry
- Case Study New Industry

Stormwater Management

Conventional

- Goals
 - Prevent flooding onsite
 - Quantity control
 - Quickly convey runoff offsite
- Effects
 - Decreased groundwater recharge
 - Increased runoff volume
- End Result
 - Down gradient flooding
 - Erosion
 - Water quality degradation
 - Large end-of-pipe BMP requirements

Sustainable

🗆 Goal

- Mimic predevelopment hydrologic regime by using design techniques that infiltrate, filter, store, evaporate, and detain runoff close to its source
- Methods
 - Limit disturbance
 - Preserve sensitive site features
 - Minimize grading
 - Reduce impervious surfaces
 - Source control
 - Micro scale stormwater management
 - Create multiple sub-watersheds
 - Lengthen flow paths (increase Tc)

Green Infrastructure (GI)

- Natural systems that capture, cleanse and reduce stormwater runoff using plants, soils and microbes
 - Green Roofs
 - Grass Filter Strips
 - Bioswales
 - Bioretention

Benefits

- Infiltration replenishes groundwater supplies
 - Increase aquifer recharge
 - Maintain base flows to streams and wetlands
- Reduced runoff and sediment discharge
 - Lower maintenance costs
 - Increased treatment capacity
- Improves water quality and public health
- Enhanced aesthetics
- Creates habitat

Sustainable Stormwater/Gl

- Residential
 - Low Impact
 Development
 - Better Site Design
 - Stormwater Credits
 - GreenStreets
- Commercial
 - LEED Certification
- 🗆 Industrial

Conventional Industrial Design

- Impervious Surfaces
 - Capture and conveyance
 - Quantity control
- Gravel Surface Cover
 - Pathway to groundwater
- Large End-of-Pipe Treatment

Regulatory Drivers

- Stricter SPDES limits
- Antiquated end-of-pipe solutions
 - Cannot provide sufficient treatment
- Limited land availability

Need Creative Solutions

Top Total Maximum Daily Load (TMDL) Constituents

Mercury	Phosphorus	
Iron	Nitrogen	
Aluminum	- Ammonia	
Manganese	- Nitrate	
Copper	Sediment	
Lead	PCBs	
Selenium	Pathogens	
Zinc	BOD	
Cadmium	COD	
Arsenic		

Engineered Natural Systems

- Technologies that optimize natural processes to clean contaminated soils and water
 - Sustainable
 - Resilient
 - Passive
 - Low O&M
 - Long LifeHigh PR

ENS Technologies

- Engineered Wetlands
 - Surface Flow
 - Subsurface Flow
- Natural Media Filters
 - Engineered Soil Profiles
 - Compost Filters
 - Bioswales

- Phytotechnology
 - Hydraulic Control
 - Enhanced Biodegradation
 - Phytostabilization
- Green Infrastructure
 - Bioswales
 - Bioretention/Raingardens
 - Stormwater Wetlands

Natural Media Filtration (NMF)

The use of natural materials to filter, adsorb and sequester contaminants from groundwater, wastewater, and/or stormwater.

- Media Types
 - Compost
 - Peat
 - Sand
 - Gravel
 - Limestone
 - Native Soils
 - Waste Materials

- Removal Mechanisms
 - Filtration
 - Adsorption
 - Precipitation
 - Degradation
 - pH neutralization

Photos provided by: Google Images

ROU

GI Techniques using NMFs

Design Process

Proof of Technology

Bench Scale

<u>Small Pilot</u>

Large Pilot

Design Considerations

- Contaminants of Concern (COC)
 - Fate and transport
 - Potential phytotoxicity
- Site Specific Conditions
 - Surface cover
 - Soils
 - Groundwater
- Spill Containment
 - Need for pretreatment
- □ O&M
 - Low Maintenance <u>not</u> "NO" Maintenance

Mid-Talk Break

Questions?

Engineered Soil Profiles (ESPs)

- Vegetated surfaces designed to treat sheet flow from adjacent surfaces
- Utilize specific soil mixtures and amendments to maximize treatment effectiveness
 - Reduce Velocities
 - Filtration
 - Adsorption

South Carolina

New York

Bioswales

- Vegetated, open channels designed to treat, attenuate, and convey stormwater runoff
- Vegetation
 - Attenuate velocities
 - Filtration
- Check Dams
 - Ponding
 - Sedimentation
 - Filtration
 - pH neutralization

Bioswales, WA

Bioswales, WA

Bioswales, WA

Natural Media Filtration (NMF)

The use of natural materials to filter, adsorb and sequester contaminants from groundwater, wastewater, and/or stormwater.

- Media Types
 - Compost
 - Peat
 - Sand
 - Gravel
 - Limestone
 - Native Soils
 - Waste Materials

ROUX

Compost NMF for Metal Removal

Copper and Selenium Removal

FiltrationAdsorption

Metal Precipitation

Compost NMF for PCB removal

- □ Filtration
- □ Adsorption
- Reductive Dechlorination

Bench Scale

Full Scale

Liner Installation

Compost Installation

Natural Media Filter, PA

Engineered Wetlands

Engineered treatment system designed to achieve water quality improvements by maximizing processes that occur in natural wetlands

- Mine Drainage
 - Metals
 - TSS
 - pH
- Sanitary Wastewater
 - Nutrients
 - Pathogens
- Landfill Leachate
 - Metals
 - Ammonia
- Agricultural Runoff
 - TSS
 - Nutrients
- □ Airport
 - Glycol
 - BOD

- Urban and Industrial Stormwater
 - Metals
 - Nutrients
 - Solids
 - PCBs
- Industrial Wastewater
 - Metals
 - BTEX
 - PAHs
- Groundwater Remediation
 - Metals
 - BTEX
 - PAHs
 - Chlorinated Solvents

Surface Flow (SF)

Types

Subsurface Flow (SSF)

SF for Metal Removal, TX

SF for Metal Removal, NJ

SSF for Fluoride Removal, SC

SSF for BTEX Removal, RI

Case Study: Smelter, Iceland

Particulate Emissions
sodium fluoride
aluminum fluoride
PAHs

Design Plan

Source Management
 Engineered Soil Profiles

2. Conveyance

- Bioswales
- Storm Sewers

3. End-of-Pipe

- Engineered Wetlands

3

Native Soil Testing

	Influent	Effluent
Fluoride	20 mg/L	<0.2 mg/L
Aluminum	2 mg/L	<0.2 mg/L
рН	5.6	6.0
Permeability	2.5E-07 to 5.2E-05 cm/sec	

2.5E-07 to 5.2E-05 cm/sec

ROUX Engineered Soil Profiles and Bioswales

Engineered Soil Profiles

Bioswales

SF Engineered Wetlands

SF Engineered Wetlands

186.86 m

796.31 m

5

Vegetation Harvesting

Operation

Summary

Sustainable Stormwater Management

- Extensively utilized in both residential and commercial development... Industrial
- Site Specific Design
 - COCs Fate and Transport
 - Existing Soils
 - Vegetation
 - O&M
- Existing Industry
 - Incorporate GI techniques to improve end-of-pipe performance
- New Industrial Development
 - Incorporate sustainable practices into site design
 - Maximize use of local resources
 - Reduce need for future remediation/repairs

Questions?

Contact Roux Associates at 1-800-322-7689 www.rouxinc.com